
Confidentiality-preserving Smart 
Contracts
Ahmed Lekssays
University of Insubria, Varese, Italy

September 23rd, 2021



Outline

1. Introduction
2. Background
3. Challenges
4. Ekiden
5. Other Approaches
6. Existing Technologies
7. Conclusion
8. References

2



Introduction

3



Introduction

Motivation

- Smart contracts inherit some undesirable blockchain properties;
- Existing smart contract systems thus lack confidentiality or privacy;
- Blockchain consensus requirements also hamper smart contracts with poor 

performance.

Problem Statement

Design a platform for confidential and performant smart contracts’ execution.

4



Background

5



Smart Contracts and Blockchains

- Smart Contracts are programs executed by a network of participants who 
reach agreement on the programs’ state;

- Full replication on all nodes provides a high level of fault tolerance and 
availability;

- On-chain computation of fully replicated smart contracts is inherently 
expensive;

- Contract state and user input must be public in order for miners to verify 
correct computation.

⇒ Lack of privacy.

6



Trusted Hardware with Attestation

- A trusted execution environment (TEE) protects the confidentiality and 
integrity of computations;

- A TEE  can issue proofs, known as attestations, of computation correctness;
- Intel SGX provides a CPU-based implementation of TEEs—known as enclaves 

in SGX—for general-purpose computation;
- It is infeasible for any entity other than an SGX platform to generate any 

attestation;
- SGX alone cannot guarantee availability: a malicious host can terminate 

enclaves or drop messages arbitrarily.

⇒ Lack of availability.
7



Challenges

8



Tolerating TEE Failures

- Availability failures
- A malicious host can terminate enclaves, and even an honest host could lose enclaves in a 

power cycle.
- Side channels

- Recent work has uncovered data leakage via side channel attacks;
- Existing defenses are generally application and attack-specific;
- It is still desirable to limit the impact of compromised TEEs.

- Timer failures
- TEEs in general lack trusted time sources;
- Although a trusted relative timer is available, the communication between enclaves and the 

timer can be delayed by the OS.

9



Proof of Publication for PoW blockchains

- A TEE must be able to efficiently verify that an item has been stored
- in the blockchain.
- Such a proof can consist of signatures from a quorum of consensus nodes 

(Permissioned Blockchain).
- TEEs must be able to validate new blocks (Permissionless Blockchain).

- A trusted timer is needed to defend against an adversary isolating an enclave and presenting 
an invalid subchain.

- An attacker delaying a timer’s responses cannot prevent an enclave from 
successfully verifying blockchain contents given trust in, e.g. TLS-enabled 
NTP servers.

10



Atomic Delivery of Execution Results

- Atomicity of executions namely either both executions exc1, exc2 finish or 
none of them;

- TEE cannot tell whether an input state is fresh, an attacker can provide stale 
states to resume a TEE’s execution from an old state;

- An attacker may repeatedly rewind until receiving the desired output;
- Another example is that rewinding could defeat budget based privacy protection, such as 

differential privacy.

11



Ekiden

12

Cheng, Raymond, et al. "Ekiden: A platform for confidentiality-preserving, trustworthy, and performant smart contracts." 2019 IEEE European Symposium 
on Security and Privacy (EuroS&P). IEEE, 2019.



Overview

- Clients are end users of smart 
contracts; 

- A client can create contracts or 
execute existing ones with secret 
input.

- Compute nodes process 
requests from clients by running 
the contract in a contract TEE 
and generating attestations 
proving the correctness of state 
updates.

13

Figure 1: Ekiden Overview



Overview (Cont’d)

- Consensus nodes maintain a 
distributed append-only ledger 
by running a consensus protocol;

- Contract state and attestations 
are persisted on the blockchain;

- Consensus nodes are 
responsible for checking the 
validity of state updates using 
TEE attestations.

14

Figure 1: Ekiden Overview



Overview (Cont’d)

- Ekiden decouples request 
execution from consensus;

- A request is only executed by K 
compute nodes (possibly K=1);

- Proof of correct execution takes 
the form of a signature. 

- Consensus nodes do not need 
neither trusted hardware nor to 
contact the IAS to verify it.

15

Figure 1: Ekiden Overview



Security Goals

- Correct execution: 
- Contract state transitions reflect correct execution of contract code on given state and inputs.

- Consistency: 
- At any time, the blockchain stores a single sequence of state transitions consistent with the 

view of each compute node.

16



Security Goals (Cont’d)

- Secrecy: 
- Ekiden guarantees that contract state and inputs from honest clients are kept secret from all 

other parties (without any TEE breach);
- Ekiden is resilient to some key-manager TEEs being breached.

- Graceful confidentiality degradation: 
- Should a confidentiality breach occur in a computation node, Ekiden provides forward secrecy 

and reasonable isolation from the affected TEEs.

⇒  Ekiden does not prevent contract-level leakage (e.g. through covert channels, 
bugs or side channels).

17



Evaluation

- Use cases:
- Machine Learning Contracts (predicting the likelihood of heart disease based on medical 

records)
- Smart Building Thermal Modeling (an implementation of non-linear least squares, which is 

used to predict temperatures based on time series thermal data from smart buildings).
- Tokens (an implementation in Rust of an ERC20 Token);
- Poker (a contract where users take turns submitting their actions to the contract, and the 

smart contract contains all of the game logic for shuffling and (selectively) revealing cards);
- CryptoKitties (an Ethereum game that allows users to breed virtual cats, which are stored on 

chain as ERC721 tokens).

18



Evaluation

19

Figure 2: End-to-end latency of client requests for various contracts. Figure 3: Throughput comparison across contracts and systems.



Other Approaches

20



ZKP-based Approaches: Hawk

- Hawk  has  strong  privacy  goals  that  include :
- Hiding  the  amounts  and  transacting  parties  of  monetary transfers;
- Hiding  contract  state  from  non-participants;
- Supporting private inputs that are hidden even from other participants in the contract.

- It suffers from some limitations:
- SNARKs require a per-circuit trusted setup, which means that for every distinct program that a 

contract implements, a new trusted setup is required;
- Each contract requires kilobytes of data to be put on-chain;
- Privacy in Hawk relies on trusting a third-party manager who gets to see all the private data.

21

Kosba, Ahmed, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou. 2016. “Hawk: The Blockchain Model of Cryptography and 
Privacy-Preserving Smart Contracts.” In 2016 IEEE Symposium on Security and Privacy (SP), 839–58. ieeexplore.ieee.org.



Secure MPC-based Approaches: Enigma

- Secure multi-party computation is a cryptographic technique that allows 
parties to compute functions on private inputs without learning anything but 
their output.

- This  enables  attaching monetary conditions to the outcome of computations 
and incentivizing fairness (by penalizing aborting parties).

- MPC based systems require the active (and interactive) participation of all  
computing nodes.

- The cryptographic tools impose a significant efficiency burden.

22
Zyskind, G., Nathan, O., & Pentland, A. (2015). Enigma: Decentralized computation platform with guaranteed privacy. arXiv preprint arXiv:1506.03471.



Off-chain Approaches: Arbitrum

- Smart contracts are considered as VMs.
- Execution verification is only launched in case of a dispute (challenge-based 

verification).
- The challenger and the entity that run the VM deposit a stake.
- The verifiers need to check only specific instructions.
- Whoever fails loses deposit, half for the winner and the other half for the 

verifier.
- It is consensus agnostic. 

23
Kalodner, Harry, et al. "Arbitrum: Scalable, private smart contracts." 27th {USENIX} Security Symposium ({USENIX} Security 18). 2018.



Existing 
Technologies

24



HF Private Chaincode

- Hyperledger Fabric Private Chaincode (FPC) enables the execution of 
chaincodes using Intel SGX for Hyperledger Fabric.

- It allows to write chaincode applications where the data is encrypted on the 
ledger and can only be accessed in clear by authorized parties [2].

25



Hyperledger PDOs

- Private Data Objects (PDO) enables sharing of data and coordinating action 
amongst mutually distrusting parties;

- Interaction is mediated through a “smart contract” that defines data access 
and update policies;

- The smart contracts policies are enforced through execution in a Trusted 
Execution Environment (TEE);

- PDOs use Hyperledger Sawtooth distributed ledger [3].

26



Microsoft CCF

- Confidential Consortium Framework (CCF) is an open-source framework for 
building a new category of secure, highly available, and performant 
applications that focus on multi-party compute and data;

- CCF leverages trust in a consortium of governing members and in a network 
of replicated hardware-protected execution environments to achieve high 
throughput, low latency, strong integrity and strong confidentiality [4]. 

27



Conclusion

28



Conclusion

- Smart contracts lack privacy and TEEs lack availability;
- TEE and Blockchain are complementary;
- Usage of TEE in blockchain improves performance and preserves privacy;
- There are current PoC developed by various companies like Hyperledger 

(PDOs, HF Private Chaincodes), Microsoft (CCF), and Oasis Labs (Ekiden).
- Other approaches that involve different techniques like ZKP, MCP, and 

off-chain evaluation were proposed.

29



Thank you!
Any question?

30



References

[1] Cheng, Raymond, et al. "Ekiden: A platform for confidentiality-preserving, trustworthy, and performant smart contracts." 
2019 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 2019.

[2] Kosba, Ahmed, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou. 2016. “Hawk: The Blockchain 
Model of Cryptography and Privacy-Preserving Smart Contracts.” In 2016 IEEE Symposium on Security and Privacy (SP), 
839–58. ieeexplore.ieee.org.

[3] Zyskind, G., Nathan, O., & Pentland, A. (2015). Enigma: Decentralized computation platform with guaranteed privacy. 
arXiv preprint arXiv:1506.03471.

[4] Kalodner, Harry, et al. "Arbitrum: Scalable, private smart contracts." 27th {USENIX} Security Symposium ({USENIX} 
Security 18). 2018.

[5] Hyperledger-Labs. “Hyperledger-Labs/Fabric-Private-Chaincode.” GitHub, 
github.com/hyperledger-labs/fabric-private-chaincode.

[6] Hyperledger-Labs. “Hyperledger-Labs/private-data-objects.” GitHub, github.com/hyperledger-labs/private-data-objects.

[7] Microsoft. “Microsoft/CCF” GitHub, github.com/microsoft/CCF.

31


